# Training-Free Scanning Robustness Guided Diffusion Model for Aesthetic QR Code Generation

#### Jia-Wei Liao

#### National Taiwan University<sup>1</sup>, Academia Sinica<sup>2</sup>

Co-work with Winston Wang<sup>2</sup>, Tzu-Sian Wang<sup>2</sup>, Li-Xuan Peng<sup>2</sup>, Ju-Hsuan Weng<sup>2</sup>, Cheng-Fu Chou<sup>1</sup>, Jun-Cheng Chen<sup>2</sup>

June 3, 2024



# Outline

- 1. Introduction
- 2. Diffusion Models
- 3. Iterative Refinement Algorithm
- 4. Experiments
- 5. Conclusion

# Outline

#### 1. Introduction

#### 2. Diffusion Models

3. Iterative Refinement Algorithm

4. Experiments

5. Conclusion

### **Motivation**



# **Aesthetic QR Code**



Visualead



SEE QR Code



Halftone Code



 $\operatorname{ArtCoder}$ 



Qart







# **Our Work**



QR Code

Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.

#### Text Prompt



#### Aesthetic QR Code

# **Our Work**



QR Code

Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.

#### Text Prompt



Aesthetic QR Code

# **Our Work**



QR Code

Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.

#### Text Prompt



Aesthetic QR Code

# Outline

1. Introduction

#### 2. Diffusion Models

3. Iterative Refinement Algorithm

4. Experiments

5. Conclusion

# What is Generative Model Learning?



# What is Generative Model Learning?



# What is Generative Model Learning?



# **Diffusion Phenomenon**



# **Development of Diffusion Models**

- Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International Conference on Machine Learning (ICML). 2015.
- Song, Yang, et al. "Score-Based Generative Modeling through Stochastic Differential Equations." International Conference on Learning Representations (ICLR). 2020.
- Ho, Jonathan, et al. "Denoising diffusion probabilistic models." Proceedings of the 34th International Conference on Neural Information Processing Systems (NeurIPS). 2020.

# **Diffusion Models: Forward Process**



# **Diffusion Models: Forward Process**



# **Diffusion Models: Forward Process**



# **Diffusion Models: Reverse Process**



# **Diffusion Models: Reverse Process**



# **Diffusion Models: Reverse Process**



Given  $1 > \alpha_1 > \alpha_2 > ... > \alpha_T > 0$ ,



 $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2) \iff \mathbf{x} = \mu + \sigma \mathbf{z}$  with  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 

Given  $1 > \alpha_1 > \alpha_2 > ... > \alpha_T > 0$ ,



Reverse Process (Denoising)

Given  $1 > \alpha_1 > \alpha_2 > ... > \alpha_T > 0$ ,



Reverse Process (Denoising)

1.  $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2.  $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$ 

# **Diffusion Process of Image Manifold**



 $\mathcal{N}(\mathbf{0},\mathbf{I})$ 

# **Diffusion Process of Image Manifold**



### **Reverse Process back to Image Manifold**





### **Reverse Process back to Image Manifold**



### **Reverse Process back to Image Manifold**



### **Derivation of Distribution at Last Timestep**

Since  $p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t) \mathbf{I}),$ 

$$p(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}).$$

where  $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ . Then

$$p(\mathbf{x}_t) = \int p(\mathbf{x}_t | \mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0 \to \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

by letting  $t \to \infty$ . We assume the final step distribution  $p(\mathbf{x}_T)$  is standard normal distribution, i.e.,  $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{0}, \mathbf{I})$ .

#### **Derivation of Reverse Process**

Notice that

$$p(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t}\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I}), \quad p(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}).$$

By Bayes' theorem, we can derive the conditional distribution in reverse process

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \frac{p(\mathbf{x}_t|\mathbf{x}_{t-1})p(\mathbf{x}_{t-1}|\mathbf{x}_0)}{p(\mathbf{x}_t|\mathbf{x}_0)}.$$

Therefore, we have  $p(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \mu_t(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$  with

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \mathbf{x}_0 \quad \text{and} \quad \sigma_t^2 = \frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}$$

• Forward Process:

$$p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t) \mathbf{I})$$

• Reverse Process:

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \sigma_t^2 \mathbf{I})$$

#### • Forward Process:

$$p(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t) \mathbf{I})$$

• Reverse Process:

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\sigma}_t^2 \mathbf{I})$$

In practice, we don't have  $\mathbf{x}_0$ . Thus, our goal is to train the deep learning model to reconstruct  $\mathbf{x}_0$  such that

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := p(\mathbf{x}_{t-1}|\mathbf{x}_t, \hat{\mathbf{x}}_{0|t}) \approx p(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0).$$

# $\label{eq:stimating} \textbf{Estimating} \, \textbf{x}_0 \, \textbf{and} \, \textbf{Training} \, \textbf{Objective}$

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}_0 \sim \mathcal{D}^N, t \sim U(1,T), \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \| \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\underbrace{\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t}_{\mathbf{x}_t}, t) - \boldsymbol{\epsilon}_t \|_2^2.$$



# **Estimating x**<sub>0</sub> and **Training Objective**

$$\mathscr{L}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim \mathscr{D}^N, t \sim U(1,T), \varepsilon_t \sim \mathscr{N}(\mathbf{0},\mathbf{I})} \| \varepsilon_{\theta}(\underbrace{\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t}_{\mathbf{x}_t}, t) - \varepsilon_t \|_2^2.$$

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t$$



# **Estimating x**<sub>0</sub> and **Training Objective**

$$\mathscr{L}(\theta) = \mathbb{E}_{\mathbf{x}_0 \sim \mathscr{D}^N, t \sim U(1,T), \epsilon_t \sim \mathscr{N}(\mathbf{0},\mathbf{I})} \| \epsilon_{\theta}(\underbrace{\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon_t}_{\mathbf{x}_t}, t) - \epsilon_t \|_2^2.$$

$$\mathbf{x}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}_{t}$$

$$\mathbf{x}_{0}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{t}$$

$$\mathbf{x}_{t}$$

$$\mathbf{x}_{t}$$

$$\mathbf{x}_{t}$$

$$\mathbf{x}_{t-1}$$

$$\mathbf{x}_{T}$$

# **Sampling Algorithm**

1.  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .

2.  $\mathbf{x}_{t-1} \sim p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I}), t = T, T-1, ..., 1.$ 

# Sampling Algorithm

1.  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ .

2.  $\mathbf{x}_{t-1} \sim p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mu_{\theta}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I}), t = T, T-1, ..., 1.$ 

$$\mathbf{x}_{t-1} = \mu_{\theta}(\mathbf{x}_t, t) + \sigma_t \mathbf{z}_t$$
$$= \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \mathbf{\hat{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t,$$

where  $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  and  $\hat{\mathbf{x}}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_{\theta}(\mathbf{x}_t, t)).$ 

$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$





$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



Image manifold  $\mathcal{M}$ 

$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



Image manifold  $\mathcal{M}$ 

$$\mathbf{x}_{t-1} = \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_t)}{1 - \bar{\alpha}_t} \hat{\mathbf{x}}_{0|t} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_t)}{1 - \bar{\alpha}_t}} \mathbf{z}_t$$



# Outline

- 1. Introduction
- 2. Diffusion Models

#### 3. Iterative Refinement Algorithm

- 4. Experiments
- 5. Conclusion



Our goal is to define a smooth loss function to measure the similarity between image and QR code.

# **Scanning-Robust Loss**

We define the Scanning Robust Loss (SRL) as

 $\mathcal{L}_{SR}(\mathbf{x}, \mathbf{y}) = \|\operatorname{vec}(\mathbf{E})\|_1,$ 

where the error matrix E is

 $\mathbf{E} = \max(1 - 2\mathscr{G}(\mathbf{x}), 0) \odot \mathbf{y} + \max(2\mathscr{G}(\mathbf{x}) - 1, 0) \odot (1 - \mathbf{y}).$ 











Image manifold  $\mathcal{M}$ 









For t = T, T - 1, ..., 1,

$$\begin{aligned} \hat{\mathbf{x}}_{0|t} &= \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left( \mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \epsilon_{\theta}(\mathbf{x}_{t}, t) \right) \\ \hat{\mathbf{x}}_{0|t}^{*} &= \hat{\mathbf{x}}_{0|t} - \gamma \nabla_{\hat{\mathbf{x}}_{0|t}} \mathscr{L}_{\mathrm{SR}}(\hat{\mathbf{x}}_{0|t}, \mathbf{y}) \\ \mathbf{x}_{t-1} &= \frac{\sqrt{\alpha_{t}} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}} (1 - \alpha_{t})}{1 - \bar{\alpha}_{t}} \hat{\mathbf{x}}_{0|t}^{*} + \sqrt{\frac{(1 - \bar{\alpha}_{t-1})(1 - \alpha_{t})}{1 - \bar{\alpha}_{t}}} \mathbf{z}_{t} \end{aligned}$$

# Outline

- 1. Introduction
- 2. Diffusion Models
- 3. Iterative Refinement Algorithm

#### 4. Experiments

#### 5. Conclusion

### **Qualitative Results**



Winter wonderland, fresh snowfall, evergreen trees, cozy log cabin, smoke rising from chimney, aurora borealis in night sky.



Cherry blossom festival, pink petals floating in the air, traditional lanterns, peaceful river, people in kimonos, sunny day.



Majestic waterfall, lush rainforest, rainbow in the mist, exotic birds, vibrant flowers, serene pool below.



Abandoned amusement park, overgrown rides, haunting beauty, sense of nostalgia, sunset lighting.



Futuristic urban park, green spaces amid skyscrapers, eco-friendly design, people enjoying outdoors, advanced city life.



Old European town square, cobblestone streets, café terraces, flowering balconies, gothic cathedral, bustling morning.



Lost city of Atlantis, underwater ruins, mythical creatures, ancient mysteries, ocean exploration.



Old Western saloon at night, lively music, dancing, vintage decor, sense of time travel.

Original QR Code

# **Quantitative Comparison with Other Methods**

- SSR: Scanning Success Rate
- LAS: LAION Aesthetic Score

| Method          | SSR ↑ | LAS ↑  |
|-----------------|-------|--------|
| QR Diffusion    | 96%   | 5.5150 |
| QR Code AI Art  | 90%   | 5.7003 |
| QRBTF           | 56%   | 7.0817 |
| QR Code Monster | 60%   | 7.0661 |
| Ours            | 99%   | 6.8233 |

Table: Quantitative results.

### **Error Analysis**



**Unscannable** (#1000 ~ #625 timestep)





# Outline

- 1. Introduction
- 2. Diffusion Models
- 3. Iterative Refinement Algorithm
- 4. Experiments
- 5. Conclusion

# Conclusion

- We develop a training-free iterative refinement algorithm for diffusion model with the development of the Scanning-Robust Loss (SRL), significantly enhancing QR code scannability without compromising visual appeal.
- We demonstrated a higher scanning success rate compared to commercial alternatives, maintaining visual quality and confirming the suitability of these QR codes for real-world applications.

# Thank you!